THE MODULE OF ZARISKI-DIFFEREINTIALS OF A NORMAL GRADED GORENSTEIN-SINGULARITY

Erich PLATTE
Fachbereich 3, Naturwissenschaften/Mathematik, Universität Osnabrück, Driverstraße 22, D-2848 Vechta, Fed. Rep. Germany
Communicated by F. Oort
Received 14 March 1983
Revised 11 July 1983

1. Introduction

In the reapers [5,6] we have studied the properties of pure subrings A or invariant subrings A of a local regular k-algebra B and have tried to f ind as much as possible total differentials of the finite differential module $\mathrm{D}_{k}(A)$ of A which form part of a minimal system of generators of $\left(\mathrm{D}_{k}(A)\right)^{* *}$ - the so-called module of Zariskidifferentials of A. (For the theory of finite differential modules we refer the reader to the work [7] of G. Scheja and U. Storch.) For example, if the field k has characteristic zero and the pure extension $A \rightarrow B, B$ being regular, is non-degenerate in a suitable sense, then one can find $s=\operatorname{dim} A\left(\right.$ total) differentials in $\mathrm{D}_{k}(A)$ which form part of a minimal system of generators of $\left(\mathrm{D}_{k}(A)\right)^{* *}$. In case there is a finite group \mathcal{G} acting on B with $B^{G}=A$, then any minimal system of generators of $\mathrm{D}_{k}(A)$ is part of a minimal system of generators of $\left(\mathrm{D}_{k}(A)\right)^{* *}$. In this paper we will prove that this last embedding-property holds for a! bitrary normal graded Gorensteinsingularities over a field of characteristic zero. We use the term 'graded' in a sense, which we will discuss in the following section.

Let k be a field of characteristic zero; a local analytic k-algebra A with $k=k_{A}:=A / \mathrm{m}_{A}$ is called (positively) graded, if there exists a k-derivation δ of A and a system of generators x_{1}, \ldots, x_{m} of the maximal ideal m_{A} of A with $\delta x_{i}=m_{i} x_{i}$ and strict positive eigenvalues $m_{i} \in \mathbb{N}$. We call δ a grading derivation of A. The theory of graded analytic k-algebras has been developed in the works [8-11] of G . Scheja and H. Wiebe. In general, it is very difficult to decide whether a local analytic k-algebra is graded or not. G. Scheja and H. Wiebe have given many such criteria, for example:
1.1. It suffices to require the identity $\delta x_{i} \equiv m_{i} x_{i}$ modulo m_{A}^{2} with $m_{i} \in \mathbb{N}, m_{i}>0$. (See Korollar (2.7) in [10].)
1.2. If A is a reduced complete intersection with isolated singularity, then it is
enough to require that there exists a derivation which acts bijectively on $\mathrm{m}_{A} / \mathrm{m}_{A}^{2}$. (See Satz (4.4) in [9])
1.3. If k is algebraically closed and A is a normal domain of dimension 2, then it suffices to require that there exists a derivation of A which acts not nilpotently on $\mathrm{m}_{4} / \mathrm{m}_{4}^{\frac{2}{4}}$. (See Satz (3.1) :n [10].)

A non-unt. $\boldsymbol{g} \neq \mathbf{0}$ of a local graded k-algebra A with grading derivation δ and char $k=0$ is called homogeneous of degree α, if g is an eigenvector of δ with cigenvalue α. Then α is necessarily a positive integer. From [4, p. 144] we obtair immediately:
1.4. If t-depth A. then there exists a homogeneous A-sequence of length t whose efemems are all of the same degree.

2. An embedding-property of the module of Zariski-differentials of a normal graded (iorenstein-singularity

I el us begin with the following lemma:
2.1. I.emma. Let k be a field of characteristic zero and A be a normal, local graded amalusic k-algebra with grading derivation δ. Then one of the following assertions strue:
(a) The canomical induced man $\mathrm{D}_{k}(A) \otimes_{A} k_{A} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \otimes_{A} k_{A}$ is injes tive.
(t) The derination o generates a free direct summand of the derivation module (1) (1 il $)^{*}$ of A.

Proof. We may assume $\operatorname{dim} A \geq 2$, and we will only use the fact that A has depth 22. There cives an A-linear surjective map $\mathrm{D}_{h}(A) \rightarrow \mathrm{m}_{A}$ with $\mathrm{d} x_{i} \mapsto m_{l} x_{i}$, which we will again call δ. For the corresponding bidual map $\delta^{* *}:\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow\left(\mathrm{~m}_{4}\right)^{* *}=A$ He dixcuss the following cases:
(a) $\delta^{* *}$ is mot surjective; then it follows from the inclusions

$$
m_{1} \quad \operatorname{im} \delta \subseteq \operatorname{im} \delta^{* *} \subseteq m_{4}
$$

That os * map. : (A) ** onto m_{1}. Since the composite map $\mathrm{D}_{k}(A) \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow \mathrm{~m}_{1}$ is surfectise and : ierefore bijective modulo m_{4}, it follows that the first assertion mut hold.
(b) $\delta^{*}\left(D_{h}(A)\right)^{* *} \rightarrow A$ is surjective; in this case $\left(m_{A}\right)^{*}=A^{*}$ is a direct summand of $\left(\mathrm{D}_{i}(A)^{*}\right.$ sia the dualized map $\delta^{*}:\left(\mathrm{m}_{A}\right)^{*}=A^{*} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{*}$. Now, one easily sees that $0^{*}(1), \delta$ and in this case the second assertion holds.
2.2. Remarh. In whition to the 1 cmma 2.1 "e observe: The grading derivation δ
generates : fret direct summand of $\left(\mathrm{D}_{k}(A)\right)^{*}$ if and only if the biduxized map $\delta^{* *}:\left(\mathrm{D}_{k}(A)\right)^{* *-}\left(\mathrm{m}_{A}\right)^{* *}=A$ is surjective. The if-part of this statement has been already proved; the only-if-part is seen as follows: Let $\delta^{*}:\left(\mathfrak{m}_{A}\right)^{*} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{*}$ be the dualized nap of $\delta: \mathrm{D}_{k}(A) \rightarrow \mathrm{m}_{\mathcal{A}}$ with $\delta^{*}(1)=\delta$. If $\delta=\delta^{*}(1)$ generates a free direct summand of $\left(\mathrm{D}_{k}(A)\right)^{*}$, then $\delta^{* *}:\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow\left(\mathrm{~m}_{A}\right)^{* *}=A$ must be surjective.

In the two-dimensional case we have:
2.3. Corollary. Let A be as in the preceding lemma with $\operatorname{dim} A \leq 2$ and let ω_{A} be the canonical module of A; then one of the following assertions is true:
(a) The canonical induced map $\mathrm{D}_{k}(A) \otimes_{A} k_{A} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \otimes_{A} k_{A}$ is injective.
(b) The derivation module $\left(\mathrm{D}_{k}(A)\right)^{*}$ of A is canonically isomorphic to $A \cdot \delta \oplus \omega_{4}^{*}$.

Proof. Let $\operatorname{dim} A=2$; in case (b) of Lemma 2.1 we consider the surjective map $\delta^{* *}:\left(\mathrm{D}_{\hat{k}}(A)\right)^{* *} \rightarrow A$ with $\mathrm{U}:=\operatorname{Ker} \delta^{* *}$, see Remark 2.2. Then U is reflexive of rank 1. It suffices to show that U is the canonical module of A. Since the sequence

$$
0 \rightarrow \mathrm{U} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow A \rightarrow 0
$$

is split-exact, one easily sees that

$$
\left(\Lambda^{2}\left(\mathrm{D}_{k}(A)\right)^{* *}\right)^{* *}=\left(\Lambda^{\prime} \mathrm{U}\right)^{* *}=\mathrm{U}^{* *}=\mathrm{U}
$$

and $\left(\Lambda^{2}\left(\mathrm{D}_{k}(A)\right)^{* *}\right)^{* *}=\left(\Lambda^{2} \mathrm{D}_{k}(A)\right)^{* *}$ is the canonical module $\omega_{\text {A }}$ of A.
Now, if in the situation of the preceding Corollary A is a normal local graded algebra which is a Gorenstein ring of dimension 2 over a field of characteristic zero, then assertion (b) cannot hold (and therefore assertion (a) must hold), since in the Gorenstein case the canonical module ω_{A} of A, and hence ω_{A}^{*}, is free, and from the canonical decomposition $\left(\mathrm{D}_{k}(A)\right)^{*}=A \cdot \delta \oplus \omega_{A}^{*}$ we obtain that the derivation module ($\left.\mathrm{D}_{k}(A)\right)^{*}$ of A is free what (in the graded case) implies that A is regular, see $[3,4]$. But in the regular case $A=k\left\langle X_{1}, \ldots, X_{s}\right\rangle$ we know that $\delta=\sum_{i-1}^{s} m_{i} X_{i} \cdot \partial_{i}$, and then δ is not part of a free basis of $\left(\mathrm{D}_{k}(A)\right)^{*}$ which contradicts the canonical decomposition $\left(\mathrm{D}_{k}(A)\right)^{*}=A \cdot \delta \oplus \omega_{A}^{*}=A \cdot \delta \oplus A$ of condition (b) in the Gorenstein case.

The following proposition is the main result of this section.
2.4. Proposition. Let k be a field of characteristic zero and A be a local graded analytic k-algebra which is a normal Gorenstein-singularity.

Then the canonical induced map $\mathrm{D}_{k}(A) \otimes_{A} k_{A} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \otimes_{A} k_{A}$ is injective, i.e. any minimal system of generators of $\mathrm{D}_{k}(A)$ forms part of a minimal system of generators of $\left(\mathrm{D}_{k}(A)\right)^{* *}$.

Proof. We will show that condition (b) of Lemma 2.1 cannot hold. Assume the con-

Irary and choose an example A of minimal dimension $s=\operatorname{dim} A$. We will obtain a contradiction by coastructing an example of lower dimension. According to the remarks following Corollary 2.3 we have necessarily $s=\operatorname{dim} A \geq 3$. Let $\delta: \mathrm{D}_{k}(A) \rightarrow \mathrm{m}_{A}$ be as in the proof of Lemma 2.1 and let δ be a free direct summand of $\left(\mathrm{D}_{k}(A)\right)^{*}$ by assumption. Then it follows from Remark 2.2 that $\delta^{* *}:\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow A$ is surjective. Let $a \subseteq .1$ de an ideal defining the variety of the singular locus of A. Since A is normal, u as codimension ≥ 2. Let \mathcal{D} be the finite (and possibly empty) set of prime ideals in A of codimension 2 which contain a. If f_{1}, \ldots, f_{s} is a homogeneous A. 4 quence with $\delta f_{i}=\alpha f_{i}$ and $\alpha \in \mathbb{N}, \alpha>0$, see 1.4 , then by the result (4.6) of H . Hewner in 11 concerning Bertini-theorems there exists a linear combination

$$
f=\Sigma c_{1}, f, \quad c_{1} \in k .
$$

Wht the following properties:
(i) $f \in a^{i^{2}}$ for all non-maximal prime ideals $a \subset_{f} m_{A}$.
(2) $f \in \cup S$.

If follow, that $\delta f=\underline{=}, c, \delta f,-\underset{=}{,}, c, \alpha f,-\alpha f$, and it is easily seen that the ring 1 I 1 in normal (since conditions (1) and (2) hold) and satisfies all the hypotheses of our theoiem. Now consider the composite map

$$
\mathrm{D}_{k}(A) f \mathrm{D}_{k}(A) \xrightarrow{\delta x_{4} A f A} \mathrm{~m}_{4} / f \cdot \mathrm{~m}_{4} \rightarrow \mathrm{~m}_{4} / f A
$$

of conomial surjectise A fA-homomorphisins which we will (by abuse of notation)

 note by the functor $\mathrm{Hom}_{4}, A\left(, \ldots f(1) \text {. The map } \delta^{* * \prime}:\left(\left(\mathrm{D}_{k}(A)\right)^{* *} / \mathrm{F}^{\prime} \mathrm{D}_{k}(A)\right)^{* *}\right)^{\prime \prime} \rightarrow$ I $f 1$ is surjective, and by the special choice of f we obtait, that the canonical (1) A)-lincar map

$$
\left(\mathrm{D}_{k}(A) f \mathrm{D}_{k}(A \mathrm{j})^{\prime-*}\left(\left(\mathrm{D}_{k}(A)\right)^{* * /} f\left(\mathrm{D}_{k}(A)\right)^{* *}\right)^{\prime \prime}\right.
$$

- bijective, since it is bijective in all prime ideals of height 2 in A which contain $f A$ whecruc $f \in \bigcup \Xi$!). We obtain that the composite map
$\left(\mathrm{D}_{(}(-t) f \mathrm{D}_{k}(.4)\right)^{\prime \prime} \rightarrow\left(\left(\mathrm{D}_{k}(A)\right)^{* *} / f\left(\mathrm{D}_{k}(A)^{* *}\right)^{\prime \prime} \rightarrow A / f A\right.$
in urfertue and that its restriction on $\mathrm{D}_{k}(A) / f \mathrm{D}_{k}(i)$ is the canonical map $\xi(0,(i) f(0,(t) \cdots m, f f$. It follows that δ generates a free direct summand of (1), (1) fid (1), see the proof of Lemma 2.1. Now, let

$$
\theta: \mathrm{D}_{6}(\cdot 1) / \int \mathrm{D}_{k}(A)-\mathrm{D}_{k}(A / f A)
$$

domere the comonical surjection and

$$
\left.\theta:(1), 14111 \cdot(1)_{4}(.1) f D_{6}(.4)\right)
$$

He wharbal mection. If $1: 1 / A \rightarrow A / A$ denotes the derivation which is induced
by δ, then $\varphi^{\prime}(\Lambda)=\delta$, since these maps agree on a suitable sy'stem of generators of $\mathrm{D}_{k}(A) / f \mathrm{D}_{k}(A)$:

$$
\varphi^{\prime}(\Delta) \overline{\mathrm{d} x_{i}}=(\Delta \circ \varphi) \overline{\mathrm{d} x_{i}}=m_{i} \cdot \overline{x_{i}}=\bar{\delta}\left(\overline{\mathrm{d} x_{i}}\right) .
$$

Since $\bar{\delta}$ is a direct $A / f A$-summand of $\left(\mathrm{D}_{k}(A) / f \mathrm{D}_{k}(A)\right)^{\prime}$ it follows the same for Δ in $\left(\mathrm{D}_{k}(A / f A)\right)^{\prime}$. This completes the proof of Proposition 2.4.
2.5. Remark. We do not know whether in Proposition 2.4 the condition 'Gorenstein' can be weakened to the condition 'Cohen-Macaulay'. We have proved Proposition 2.4 by showing the (perhaps) stronger assertion that the grading derivation δ does not generate a free direct summand of the derivation module $\left(\mathrm{D}_{k}(A)\right)^{*}$ of A, and hence we have a factorization (see 2.1 and 2.2):

$$
\mathrm{D}_{k}(A) \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \xrightarrow{\delta^{* *}} \mathrm{~m}_{A} .
$$

The reduction to the two-dimensional case uses not the Gorenstein hypothesis itself, but only the hypothesis that A is a (normal) Macaulay-ring. So, if one could disprove a canonical decomposition $\left(\mathrm{D}_{k}(A)\right)^{*}=A \cdot \delta \oplus \omega_{A}^{*}$ in the two-dimensional normal non-Gorenstein ase, too, the assertion of Proposition (2.4) would still be valid, if one replaces the hypothesis 'Gorenstein' by 'Cohen-Macaulay'. It seems likely that in the non-Gorenstein case, too, the grading derivation δ cannot span a free direct summand of $\left(\mathrm{D}_{k}(A)\right)^{*}$, although, however, by the Lemma of Zariski δ is always part of a minimal system of generators of $\left(\mathrm{D}_{k}(A)\right)^{*}, A$ being a nonregular isolated singularity; in this case the Lemma of Zariski says that all derivations of A map m_{A} into itself, see, for instance, the remark at the end of Proposition 2 in [6], and from $\delta \in \mathfrak{m}_{A}\left(\mathrm{D}_{k}(A)\right)^{*}$ we would obtain: $m_{1} x_{1}=\delta x_{1} \in \mathrm{~m}_{4}^{2}$, a contradiction.

3. Invariant subrings

In this section let B be a convergent power series ring over the (valued) field k and G be a finite group of k-algebra-automorphisms on B with card G being a unit in k. By Chap. III, $\S 3$, Satz 2 in [2] there exists a regular system of parameters X_{1}, \ldots, X_{s} of B such that G acts linearily in X_{1}, \ldots, X_{s}. Thus the invariant ring B^{G} has the form $A=k\left\langle F_{1}, \ldots, F_{m}\right\rangle, F_{i}$ being homogeneous of degree c_{i}. If $c_{i} \neq 0$ in k, $i=1, \ldots, m$, then A is a local graded analytic k-algcbra. In [5, p. 4] we have shown that one can find always elements $F_{1}, \ldots, F_{t} \in\left\{F_{1}, \ldots, F_{m}\right\}$ such that F_{1}, \ldots, F_{t} generate a \mathfrak{m}_{A}-primary ideal in A and $c_{i} \neq 0$ in $k, i=1, \ldots, t$. From this fact we deduced that there exist $s=\operatorname{dim} A$ differentials $\mathrm{d} F_{1}, \ldots, \mathrm{~d} F_{\mathrm{s}}$ which form part of minimal system of generators of $\left(\mathrm{D}_{k}(A)\right)^{* *}$, see also Remark 5 in [6]. In case char $k=0$ the following proposition has been proved in [5,2.7]; for sake of completeness we include this case here, too.
3.1. Proposition. Let G be a finite group of k-algebra-automorphisms on the convergent power series ring B over k and $A:=B^{G}$ be the invariant analytic k-algebra. Ass tme that one of the following conditions is satisfied:
(i) k has characteristic zero.
(ii) G is abelian and card G is a unit in k.

Then the following asserions hold:
(1) The can mirel induced map $\mathrm{D}_{k}(A) \otimes_{A} k_{A} \rightarrow\left(\mathrm{D}_{k}(A)\right)^{* *} \otimes_{A} k_{A}$ is injective.
(2) The torsion-submodule of $\mathrm{D}_{k}(A)$ is contained in $\mathrm{m}_{A} \mathrm{D}_{k}(A)$.
(3) $\mu\left(\mathrm{D}_{k}(A)\right)^{* *}=\mu\left(\mathrm{D}_{k}(B)\right)^{G}=\mu\left(\mathrm{D}_{k}(A)\right)+\mu\left(\mathrm{D}_{A}(B)\right)^{G}$, where μ () denotes the minimal number of generators.

Proof. Only assertion (1) has to be proved, since (2) is an easy consequence, and (3) will follow from (1) by [5,2.3]. Let X_{1}, \ldots, X_{s} be a regular system of parameters of B on which G acts linearily. Since $D_{k}(B)$ is a reflexive A-module, the canonical map $\mathrm{D}_{h}(A) \rightarrow \mathrm{D}_{h}(B)$ factors through $\left(\mathrm{D}_{k}(A)\right)^{* *}$:

$$
\mathrm{D}_{h}(A) \rightarrow\left(\mathrm{D}_{h}(A)\right)^{* *} \rightarrow \mathrm{D}_{k}(B)
$$

Therefore it only remains to be shown that the canonical induced map
(*) $\quad \mathrm{D}_{h}(A) \otimes{ }_{1} k_{1} \rightarrow \mathrm{D}_{h}(B) \otimes_{1} k_{1}$
is injective. Let $\delta: \mathrm{D}_{h}(B) \rightarrow \mathrm{m}_{B}$ denote the B-homomorphism with $\delta\left(\mathrm{u}^{\prime} Y_{i}\right)=X_{i}$. If $A=k\left\langle F_{1}, \ldots, F_{m}\right\rangle$ with $F_{\text {, }}$ being a minimal system of homogeneous generators of m_{4} with degree c_{i}, then the composition

$$
\mathrm{D}_{k}(\mathrm{~A}) \rightarrow \mathrm{D}_{h}(B) \xrightarrow{g} \mathrm{~m}_{B^{-}} \xrightarrow{\pi} \mathrm{m}_{4} \quad \text { with } \pi:=(\operatorname{card} G)^{1} \sum_{t \in ;} \tau
$$

maps $\mathrm{D}_{k}(A)$ onto $\left(c_{1} F_{1}, \ldots, c_{m} F_{m}\right) A$. Thus in case char $k=0$ the assertion is true.
Now we will prove the abelian case. In order to prove that the induced map (*) is injective, we may assume that $A=\hat{A}$ and $\hat{B}=B \otimes_{A} \hat{A}$ are complete. If $k^{\prime} \supseteq k$ is an algebraically closed field and $A^{\prime}:=A \dot{\otimes}_{k} k^{\prime}$, then G acts on $B^{\prime}:=B \otimes_{A} A^{\prime}$ with invariant ring A^{\prime}. If

$$
\mathrm{D}_{k}\left(A^{\prime}\right) \otimes_{4} \cdot k_{4} \rightarrow \mathrm{D}_{k^{\prime}}\left(B^{\prime}\right) \otimes_{4} \cdot k_{4}
$$

Winjective with $\mathrm{D}_{h}\left(A^{\prime}\right)=\mathrm{D}_{h}(A) \otimes \mathcal{A}_{1} A^{\prime}$ and $\left.\mathrm{D}_{k}\left(B^{\prime}\right)=\mathrm{D}_{k^{\prime}}(B) \otimes\right)_{1} A^{\prime}$, cf. [7, 2.7], it follow, the same for the map (*). Therefore we may assume that $k=k^{\prime}$ is algebraically closed. Then, since G is abelian with casu' \because being a unit in k, the regular wiem of parameters X_{1}, \ldots, X_{s} may be chosen in such a way that all elements of G are diagonal operators in X_{1}, \ldots, X_{s}. Thus the maxinal ideal \mathfrak{m}_{A} of A is minimally generated by monomials M_{1}, \ldots, M_{m}. Let $p:=\operatorname{char} k \geq 2$. First we show that the partial derivatives of M_{1} (resp. M_{i}) cannot vanish simultaneously. Let us assume:

$$
\dot{\partial}_{1} M_{1}=\dot{\partial}_{2} M_{1}=\cdots=\partial_{1} M_{1}=0
$$

Then there exists a monomial $M \in \mathfrak{m}_{B}$ with $M_{1}=M^{p}$.
It follows for $\tau \in G$:

$$
0=\tau\left(M_{1}\right)-M_{1}=\tau\left(M^{p}\right)-M^{p}=(\tau(M)-M)^{p}
$$

and hence $\tau\left(M^{\prime}\right)=M$ for all $\tau \in G$, and therefore $M \in m_{A}$ and $M_{1}=M^{p} \in m_{A}^{2}$. This is a contradiction. We obtain that there exist elements $c_{i j} \in k$ with

$$
c_{i j} M_{j}=\partial_{i} M_{j} \cdot X_{i}, \quad i=1, \ldots, s, \quad j=1, \ldots, m
$$

where for any fixed index $j \in\{1, \ldots, m\}$ there exists an index $i \in\{1, \ldots, s\}$ with $c_{i j} \neq 0$.

Now assume that there exist elements $a_{j} \in A$ with:

$$
\mathrm{d} M_{1}-\sum_{j-2}^{m} a_{j} \mathrm{~d} M_{j} \in \mathfrak{m}_{A} \mathrm{D}_{k}(B)
$$

which implies

$$
\partial_{i} M_{1}-\sum_{j-2}^{m} a_{j} \partial_{i} M_{j} \in m_{A} B, \quad i=1, \ldots, s .
$$

Let $c_{11} \neq 0$, then it follows

$$
\partial_{1} M_{1} \cdot X_{1} \cdot c_{11}^{-1}-\sum_{j=2}^{m} a_{j} c_{11}^{1} \partial_{1} M_{j} \cdot X_{1} \in \mathfrak{m}_{1} \cdot \mathrm{~m}_{B}
$$

or

$$
M_{1}-\sum_{j=2}^{m} a_{j} c_{11}^{-1} \cdot c_{1 j} M_{j} \in \mathfrak{m}_{A} \cdot \mathfrak{m}_{B}
$$

Now, if we apply the Reynolds-operator (card $G)^{-1} \Sigma_{t \in G ;} \tau$ to this relation, we get:

$$
M_{1}-\sum_{j-2}^{m} a_{j} c_{11}^{1} c_{1 j} M_{j} \in \mathrm{~m}_{3}^{2}
$$

which contradicts the fact that the monomials M_{1}, \ldots, M_{m} are a minimal system of generators of \mathfrak{m}_{4}. Thus the abelian case has been proved, too.
3.2. Remark. Let $G, B=k\left\langle X_{1}, \ldots, X_{s}\right\rangle$ and $A=k\left\langle F_{1}, \ldots, F_{m}\right\rangle$ be as in the beginning of this section and $\delta: \mathrm{D}_{k}(B) \rightarrow \mathrm{m}_{B}$ be the B-linear map with $\delta\left(\mathrm{d} X_{i}\right)=X_{i}$. Since G acts linearily in X_{1}, \ldots, X_{s}, one easily checks that δ is a G-homomorphism, and therefore

$$
\delta^{G}:\left(\mathrm{D}_{k}(B)\right)^{G} \rightarrow\left(\mathrm{~m}_{B}\right)^{G}=\mathrm{m}_{A}
$$

is surjective, too. Now, it has been proved in $[5,2.3]$ that the canonical map

$$
\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow\left(\left(\mathrm{D}_{k}(B)\right)^{G}\right)^{* *}=\left(\mathrm{D}_{k}(B)\right)^{G}
$$

is bijective. Hence we have a surjective map

$$
\left(\mathrm{D}_{k}(A)\right)^{* *} \rightarrow \mathrm{~m}_{A}
$$

whose restriction on $D_{k}(A)$ acts on $\mathrm{d} F_{i}$ as $\left(\operatorname{deg} F_{)}\right) \cdot F_{i}$. In case $\operatorname{deg} F_{i} \neq 0$ in k, $1=1 . \ldots, m$. we obtain from Remark 2.2 that $\delta \mid \mathrm{D}_{k}(A)$ is not a direct summand of (1), (t) $)^{*}$. even in cast: of a non-Gorenstein invariant ring $A=B^{G}$. This shows that anv fur: her invessigation of problems raised in Remark 2.5 requires a study of twodimensional normal graded non-Gorenstein algebras which are not invariant rings.

Keferences

I: 11 Henner. Dte Sate won Bertini fur lokale Ringe, Math. Ann. 229 (1977) 97-111.
Iil 14 (irauert and R. Remmert. Analytische Stellenalgebren (Springer, Berlin, 1971).
14 U Hobhoter. The Zarishi-I ipman conjecture in the graded case, J. Algebra 47 (1977) 411-424.
[1) Diatte. Im clementares Beneis des Zariski-Lipman-Problems fur graduierte analytische Hectorem. Ach Math 3! (1978) 143-145
 1 1:
\$601 IPhatc. Pare dewem for the module of Zarishi-differentials, Proc. Amer. Math. Soc. 82 (1981) - 12

If Ge Shera and t. Storch. Differentielle Eigenschaften de Lokalisierungen analytischer Algebren, Wash Amm 147 (1472) 13"-170.
[N: G, Whed ard if Wishe. I her Derivationen won lokalen analytisehen Algebren, Symp. Math. XI llo 8) lol 19?

flof e. Sheratind H. Webe. Zur Chevalley-Zerlegung von Derivationen, Manuscripta inaih. 33 (1980) 149%
 sem Hombur:

