301

THE MODULE OF ZARISKI-DIFFERENTIALS OF A NORMAL GRADED GORENSTEIN-SINGULARITY

Erich PLATTE

Fachbereich 3, Naturwissenschaften/Mathematik, Universität Osnabrück, Driverstraße 22, D-2848 Vechta, Fed. Rep. Germany

Communicated by F. Oort Received 14 March 1983 Revised 11 July 1983

1. Introduction

In the papers [5,6] we have studied the properties of pure subrings A or invariant subrings A of a local regular k-algebra B and have tried to find as much as possible total differentials of the finite differential module $D_k(A)$ of A which form part of a minimal system of generators of $(D_k(A))^{**}$ – the so-called module of Zariskidifferentials of A. (For the theory of finite differential modules we refer the reader to the work [7] of G. Scheja and U. Storch.) For example, if the field k has characteristic zero and the pure extension $A \rightarrow B$, B being regular, is non-degenerate in a suitable sense, then one can find $s = \dim A$ (total) differentials in $D_k(A)$ which form part of a minimal system of generators of $(D_k(A))^{**}$. In case there is a finite group G acting on B with $B^G = A$, then any minimal system of generators of $D_k(A)$ is part of a minimal system of generators of $(D_k(A))^{**}$. In this paper we will prove that this last embedding-property holds for arbitrary normal graded Gorensteinsingularities over a field of characteristic zero. We use the term 'graded' in a sense, which we will discuss in the following section.

Let k be a field of characteristic zero; a local analytic k-algebra A with $k = k_A := A/\mathfrak{m}_A$ is called (*positively*) graded, if there exists a k-derivation δ of A and a system of generators x_1, \ldots, x_m of the maximal ideal \mathfrak{m}_A of A with $\delta x_i = m_i x_i$ and strict positive eigenvalues $m_i \in \mathbb{N}$. We call δ a grading derivation of A. The theory of graded analytic k-algebras has been developed in the works [8-11] of G. Scheja and H. Wiebe. In general, it is very difficult to decide whether a local analytic k-algebra is graded or not. G. Scheja and H. Wiebe have given many such criteria, for example:

1.1. It suffices to require the identity $\delta x_i \equiv m_i x_i \mod m_A^2$ with $m_i \in \mathbb{N}$, $m_i > 0$. (See Korollar (2.7) in [10].)

1.2. If A is a reduced complete intersection with isolated singularity, then it is

enough to require that there exists a derivation which acts bijectively on $\mathfrak{m}_A/\mathfrak{m}_A^2$. (See Satz (4.4) in [9])

1.3. If k is algebraically closed and A is a normal domain of dimension 2, then it suffices to require that there exists a derivation of A which acts not nilpotently on m_4/m_4^2 . (See Satz (3.1) in [10].)

A non-une $g \neq 0$ of a local graded k-algebra A with grading derivation δ and char k = 0 is called homogeneous of degree α , if g is an eigenvector of δ with eigenvalue α . Then α is necessarily a positive integer. From [4, p. 144] we obtain immediately:

1.4. If t = depth A, then there exists a homogeneous A-sequence of length t whose elements are all of the same degree.

2. An embedding-property of the module of Zariski-differentials of a normal graded Gorenstein-singularity

Let us begin with the following lemma:

2.1. Lemma. Let k be a field of characteristic zero and A be a normal, local graded analytic k-algebra with grading derivation δ . Then one of the following assertions is true:

(a) The canonical induced map $D_k(A) \otimes_A k_A \rightarrow (D_k(A))^{**} \otimes_A k_A$ is injective.

(b) The derivation δ generates a free direct summand of the derivation module $(D_k(A))^{\circ}$ of A.

Proof. We may assume dim $A \ge 2$, and we will only use the fact that A has depth ≥ 2 . There exists an A-linear surjective map $D_k(A) \rightarrow \mathfrak{m}_A$ with $dx_i \mapsto m_i x_i$, which we will again call δ . For the corresponding bidual map $\delta^{**}: (D_k(A))^{**} \rightarrow (\mathfrak{m}_A)^{**} = A$ we discuss the following cases:

(a) δ^{**} is not surjective; then it follows from the inclusions

 $\mathfrak{m}_1 + \mathfrak{i}\mathfrak{m}\,\delta \subseteq \mathfrak{i}\mathfrak{m}\,\delta^{**} \subseteq \mathfrak{m}_4$

that δ^{**} maps ($\mathcal{D}_k(A)$)** onto \mathfrak{m}_A . Since the composite map $D_k(A) \to (D_k(A))^{**} \to \mathfrak{m}_A$ is surjective and electron bijective modulo \mathfrak{m}_A , it follows that the first assertion must hold.

(b) $\delta^* = (D_k(A))^{**} \rightarrow A$ is surjective; in this case $(\mathfrak{m}_A)^* = A^*$ is a direct summand of $(D_k(A))^*$ via the dualized map $\delta^*: (\mathfrak{m}_A)^* = A^* \rightarrow (D_k(A))^*$. Now, one easily sees that $\delta^*(1) - \delta$, and in this case the second assertion holds.

2.2. Remark. In addition to the Lemma 2.1 we observe: The grading derivation δ

generates : free direct summand of $(D_k(A))^*$ if and only if the bidualized map $\delta^{**}: (D_k(A))^{**-*}(\mathfrak{m}_A)^{**} = A$ is surjective. The if-part of this statement has been already proved; the only-if-part is seen as follows: Let $\delta^{**}: (\mathfrak{m}_A)^* \to (D_k(A))^*$ be the dualized map of $\delta: D_k(A) \to \mathfrak{m}_A$ with $\delta^*(1) = \delta$. If $\delta = \delta^*(1)$ generates a free direct summand of $(D_k(A))^*$, then $\delta^{***}: (D_k(A))^{**-*}(\mathfrak{m}_A)^{**} = A$ must be surjective.

In the two-dimensional case we have:

2.3. Corollary. Let A be as in the preceding lemma with dim $A \le 2$ and let ω_A be the canonical module of A; then one of the following assertions is true:

(a) The canonical induced map $D_k(A) \otimes_A k_A \to (D_k(A))^{**} \otimes_A k_A$ is injective.

(b) The derivation module $(D_k(A))^*$ of A is canonically isomorphic to $A \cdot \delta \oplus \omega_A^*$.

Proof. Let dim A = 2; in case (b) of Lemma 2.1 we consider the surjective map $\delta^{**}: (D_k(A))^{**} \rightarrow A$ with $U := \text{Ker } \delta^{**}$, see Remark 2.2. Then U is reflexive of rank 1. It suffices to show that U is the canonical module of A. Since the sequence

 $0 \rightarrow U \rightarrow (D_k(A))^{**} \rightarrow A \rightarrow 0$

is split-exact, one easily sees that

$$(\Lambda^{2}(D_{k}(A))^{**})^{**} = (\Lambda^{1}U)^{**} = U^{**} = U,$$

and $(\Lambda^2(D_k(A))^{**})^{**} = (\Lambda^2 D_k(A))^{**}$ is the canonical module ω_A of A.

Now, if in the situation of the preceding Corollary A is a normal local graded algebra which is a Gorenstein ring of dimension 2 over a field of characteristic zero, then assertion (b) cannot hold (and therefore assertion (a) must hold), since in the Gorenstein case the canonical module ω_A of A, and hence ω_A^* , is free, and from the canonical decomposition $(D_k(A))^* = A \cdot \delta \oplus \omega_A^*$ we obtain that the derivation module $(D_k(A))^*$ of A is free what (in the graded case) implies that A is regular, see [3,4]. But in the regular case $A = k\langle X_1, \ldots, X_s \rangle$ we know that $\delta = \sum_{i=1}^s m_i X_i \cdot \partial_i$, and then δ is not part of a free basis of $(D_k(A))^*$ which contradicts the canonical decomposition $(D_k(A))^* = A \cdot \delta \oplus \omega_A^* = A \cdot \delta \oplus A$ of condition (b) in the Gorenstein case.

The following proposition is the main result of this section.

2.4. Proposition. Let k be a field of characteristic zero and A be a local graded analytic k-algebra which is a normal Gorenstein-singularity.

Then the canonical induced map $D_k(A) \otimes_A k_A \rightarrow (D_k(A))^{**} \otimes_A k_A$ is injective, i.e. any minimal system of generators of $D_k(A)$ forms part of a minimal system of generators of $(D_k(A))^{**}$.

Proof. We will show that condition (b) of Lemma 2.1 cannot hold. Assume the con-

trary and choose an example A of minimal dimension $s = \dim A$. We will obtain a contradiction by constructing an example of lower dimension. According to the remarks following Corollary 2.3 we have necessarily $s = \dim A \ge 3$. Let $\delta : D_k(A) \rightarrow m_A$ be as in the proof of Lemma 2.1 and let δ be a free direct summand of $(D_k(A))^*$ by assumption. Then it follows from Remark 2.2 that $\delta^{**}: (D_k(A))^{**} \rightarrow A$ is surjective. Let $a \subseteq A$ be an ideal defining the variety of the singular locus of A. Since A is normal, a as codimension ≥ 2 . Let \mathfrak{Q} be the finite (and possibly empty) set of prime ideals in A of codimension 2 which contain a. If f_1, \ldots, f_s is a homogeneous A-sequence with $\delta f_i = \alpha f_i$ and $\alpha \in \mathbb{N}$, $\alpha > 0$, see 1.4, then by the result (4.6) of H. Flenner in [1] concerning Bertini-theorems there exists a linear combination

$$f=\sum_{i}c_{i}f_{i}, \quad c_{i}\in k,$$

with the following properties:

- (1) $f \in \mathfrak{a}^{(2)}$ for all non-maximal prime ideals $\mathfrak{q} \subset \mathfrak{m}_A$.
- (2)/eUO.

It follows that $\delta f = \sum_{i=1}^{n} c_i \delta f_i = \sum_{i=1}^{n} c_i \alpha f_i = \alpha f$, and it is easily seen that the ring A fA is normal (since conditions (1) and (2) hold) and satisfies all the hypotheses of our theorem. Now consider the composite map

$$\mathbf{D}_{k}(A)/f\mathbf{D}_{k}(A) \xrightarrow{\delta \times_{A} A/fA} \mathbf{m}_{A}/f \cdot \mathbf{m}_{A} \to \mathbf{m}_{A}/fA$$

of canonical surjective A/fA-homomorphisms which we will (by abuse of notation) denote by $\delta: D_k(A)/fD_k(A) \rightarrow \mathfrak{m}_A/fA$. Similarly we denote the canonical surjective map $\delta^{**} + {}_1A/fA: (D_k(A))^{**}/f(D_k(A))^{**} \rightarrow A/fA$ by δ^{**} . For sake of clarity we denote by the functor $\operatorname{Hom}_{A/fA}(-, A/fA)$. The map $\delta^{**'}: ((D_k(A))^{**/f}(D_k(A))^{**})'' \rightarrow A/fA$ is surjective, and by the special choice of f we obtain that the canonical (A/fA)-linear map

$$(D_k(A)/fD_k(A))'' \to ((D_k(A))^{**}/f(D_k(A))^{**})''$$

is bijective, since it is bijective in all prime ideals of height 2 in A which contain fA (observe $f \in \bigcup \mathfrak{D}!$). We obtain that the composite map

$$(\mathsf{D}_{k}(A)/f\mathsf{D}_{k}(A))'' \xrightarrow{\sim} ((\mathsf{D}_{k}(A))^{**}/f(\mathsf{D}_{k}(A))^{**})'' \rightarrow A/fA$$

is surjective and that its restriction on $D_k(A)/fD_k(A)$ is the canonical map $\delta : D_k(A) / fD_k(A) \to \mathfrak{m}_A/fA$. It follows that $\overline{\delta}$ generates a free direct summand of $(D_k(A)/fD_k(A))$, see the proof of Lemma 2.1. Now, let

$$\varphi: \mathsf{D}_k(A)/f\mathsf{D}_k(A) \to \mathsf{D}_k(A/fA)$$

denote the canonical surjection and

$$\varphi = (\mathbf{D}_k(A \mid fA))^* \rightarrow (\mathbf{D}_k(A) \mid f \mathbf{D}_k(A))^*$$

the canonical injection. If $A: A/fA \rightarrow A/fA$ denotes the derivation which is induced

by δ , then $\varphi'(\Delta) = \delta$, since these maps agree on a suitable system of generators of $D_k(A)/fD_k(A)$:

$$\varphi'(\Delta)\overline{\mathrm{d}x_i} = (\Delta \circ \varphi)\overline{\mathrm{d}x_i} = m_i \cdot \overline{x_i} = \overline{\delta}(\overline{\mathrm{d}x_i}).$$

Since δ is a direct A/fA-summand of $(D_k(A)/fD_k(A))'$ it follows the same for Δ in $(D_k(A/fA))'$. This completes the proof of Proposition 2.4.

2.5. Remark. We do not know whether in Proposition 2.4 the condition 'Gorenstein' can be weakened to the condition 'Cohen-Macaulay'. We have proved Proposition 2.4 by showing the (perhaps) stronger assertion that the grading derivation δ does *not* generate a free direct summand of the derivation module $(D_k(A))^*$ of A, and hence we have a factorization (see 2.1 and 2.2):

$$\mathbf{D}_k(A) \to (\mathbf{D}_k(A))^{**} \xrightarrow{\delta^{**}} \mathfrak{m}_A.$$

The reduction to the two-dimensional case uses not the Gorenstein hypothesis itself, but only the hypothesis that A is a (normal) Macaulay-ring. So, if one could disprove a canonical decomposition $(D_k(A))^* = A \cdot \delta \oplus \omega_A^*$ in the two-dimensional normal non-Gorenstein case, too, the assertion of Proposition (2.4) would still be valid, if one replaces the hypothesis 'Gorenstein' by 'Cohen-Macaulay'. It seems likely that in the non-Gorenstein case, too, the grading derivation δ cannot span a free direct summand of $(D_k(A))^*$, although, however, by the Lemma of Zariski δ is always part of a minimal system of generators of $(D_k(A))^*$, A being a nonregular isolated singularity; in this case the Lemma of Zariski says that all derivations of A map \mathfrak{m}_A into itself, see, for instance, the remark at the end of Proposition 2 in [6], and from $\delta \in \mathfrak{m}_A(D_k(A))^*$ we would obtain: $\mathfrak{m}_1 x_1 = \delta x_1 \in \mathfrak{m}_A^2$, a contradiction.

3. Invariant subrings

In this section let B be a convergent power series ring over the (valued) field k and G be a finite group of k-algebra-automorphisms on B with card G being a unit in k. By Chap. III, §3, Satz 2 in [2] there exists a regular system of parameters $X_1, ..., X_s$ of B such that G acts linearily in $X_1, ..., X_s$. Thus the invariant ring B^G has the form $A = k\langle F_1, ..., F_m \rangle$, F_i being homogeneous of degree c_i . If $c_i \neq 0$ in k, i = 1, ..., m, then A is a local graded analytic k-algebra. In [5, p. 4] we have shown that one can find always elements $F_1, ..., F_t \in \{F_1, ..., F_m\}$ such that $F_1, ..., F_t$ generate a m_A -primary ideal in A and $c_i \neq 0$ in k, i = 1, ..., t. From this fact we deduced that there exist $s = \dim A$ differentials $dF_1, ..., dF_s$ which form part of minimal system of generators of $(D_k(A))^{**}$, see also Remark 5 in [6]. In case char k = 0 the following proposition has been proved in [5, 2.7]; for sake of completeness we include this case here, too. **3.1.** Proposition. Let G be a finite group of k-algebra-automorphisms on the convergent power series ring B over k and $A := B^G$ be the invariant analytic k-algebra. Assume that one of the following conditions is satisfied:

- (i) k has characteristic zero.
- (ii) G is abelian and card G is a unit in k.

Then the following assertions hold:

- (1) The car inical induced map $D_k(A) \otimes_A k_A \rightarrow (D_k(A))^{**} \otimes_A k_A$ is injective.
- (2) The torsion-submodule of $D_k(A)$ is contained in $\mathfrak{m}_A D_k(A)$.

(3) $\mu(D_k(A))^{**} = \mu(D_k(B))^G = \mu(D_k(A)) + \mu(D_A(B))^G$, where $\mu()$ denotes the minimal number of generators.

Proof. Only assertion (1) has to be proved, since (2) is an easy consequence, and (3) will follow from (1) by [5, 2.3]. Let $X_1, ..., X_s$ be a regular system of parameters of *B* on which *G* acts linearily. Since $D_k(B)$ is a reflexive *A*-module, the canonical map $D_k(A) \rightarrow D_k(B)$ factors through $(D_k(A))^{**}$:

$$D_k(A) \rightarrow (D_k(A))^{**} \rightarrow D_k(B).$$

Therefore it only remains to be shown that the canonical induced map

$$(*) \qquad \mathsf{D}_k(A) \otimes_A k_A \to \mathsf{D}_k(B) \otimes_A k_A$$

is injective. Let $\delta: D_k(B) \to \mathfrak{m}_B$ denote the *B*-homomorphism with $\delta(dX_i) = X_i$. If $A = k\langle F_1, \dots, F_m \rangle$ with F_i being a minimal system of homogeneous generators of \mathfrak{m}_A with degree c_i , then the composition

$$\mathbf{D}_k(A) \to \mathbf{D}_k(B) \xrightarrow{\delta} \mathfrak{m}_B \xrightarrow{\pi} \mathfrak{m}_A$$
 with $\pi := (\text{card } G)^{-1} \sum_{\tau \in G} \tau$

maps $D_k(A)$ onto $(c_1F_1, \dots, c_mF_m)A$. Thus in case char k = 0 the assertion is true.

Now we will prove the abelian case. In order to prove that the induced map (*) is injective, we may assume that $A = \hat{A}$ and $\hat{B} = B \bigotimes_A \hat{A}$ are complete. If $k' \supseteq k$ is an algebraically closed field and $A' := A \bigotimes_k k'$, then G acts on $B' := B \bigotimes_A A'$ with invariant ring A'. If

$$\mathbf{D}_k(A')\otimes_{A'}k_{A'} \rightarrow \mathbf{D}_{k'}(B')\otimes_{A'}k_{A'}$$

is injective with $D_k(A') = D_k(A) \otimes_A A'$ and $D_k(B') = D_k(B) \otimes_A A'$, cf. [7, 2.7], it follows the same for the map (*). Therefore we may assume that k = k' is algebraically closed. Then, since G is abelian with card G being a unit in k, the regular system of parameters $X_1, ..., X_s$ may be chosen in such a way that *all* elements of G are diagonal operators in $X_1, ..., X_s$. Thus the maximal ideal \mathfrak{m}_A of A is minimally generated by monomials $M_1, ..., M_m$. Let $p := \operatorname{char} k \ge 2$. First we show that the partial derivatives of M_1 (resp. M_i) cannot vanish simultaneously. Let us assume:

$$\partial_1 M_1 = \partial_2 M_1 = \cdots = \partial_n M_1 = 0.$$

Then there exists a monomial $M \in \mathfrak{m}_B$ with $M_1 = M^p$. It follows for $\tau \in G$:

$$0 = \tau(M_1) - M_1 = \tau(M^p) - M^p = (\tau(M) - M)^p$$

and hence $\tau(M) = M$ for all $\tau \in G$, and therefore $M \in \mathfrak{m}_A$ and $M_1 = M^p \in \mathfrak{m}_A^2$. This is a contradiction. We obtain that there exist elements $c_{ii} \in k$ with

$$c_{ij}M_j = \partial_i M_j \cdot X_i, \qquad i = 1, \dots, s, \quad j = 1, \dots, m,$$

where for any fixed index $j \in \{1, ..., m\}$ there exists an index $i \in \{1, ..., s\}$ with $c_{ij} \neq 0$.

Now assume that there exist elements $a_i \in A$ with:

$$\mathrm{d}M_1 - \sum_{j=2}^m a_j \mathrm{d}M_j \in \mathfrak{m}_A \mathrm{D}_k(B)$$

which implies

$$\partial_i M_1 - \sum_{j=2}^m a_j \partial_i M_j \in \mathfrak{m}_A B, \quad i = 1, \dots, s$$

Let $c_{11} \neq 0$, then it follows

$$\partial_1 M_1 \cdot X_1 \cdot c_{11}^{-1} - \sum_{j=2}^m a_j c_{11}^{-1} \partial_1 M_j \cdot X_1 \in \mathfrak{m}_A \cdot \mathfrak{m}_B$$

or

$$M_1 - \sum_{j=2}^m a_j c_{11}^{-1} \cdot c_{1j} M_j \in \mathfrak{m}_A \cdot \mathfrak{m}_B.$$

Now, if we apply the Reynolds-operator $(\operatorname{card} G)^{-1} \sum_{\tau \in G} \tau$ to this relation, we get:

$$M_1 - \sum_{j=2}^m a_j c_{11}^{-1} c_{1j} M_j \in \mathfrak{m}_A^2.$$

which contradicts the fact that the monomials M_1, \ldots, M_m are a minimal system of generators of \mathfrak{m}_A . Thus the abelian case has been proved, too.

3.2. Remark. Let $G, B = k\langle X_1, ..., X_s \rangle$ and $A = k\langle F_1, ..., F_m \rangle$ be as in the beginning of this section and $\delta: D_k(B) \to \mathfrak{m}_B$ be the *B*-linear map with $\delta(dX_i) = X_i$. Since G acts linearily in $X_1, ..., X_s$, one easily checks that δ is a G-homomorphism, and therefore

$$\delta^G: (\mathsf{D}_k(B))^G \to (\mathfrak{m}_B)^G = \mathfrak{m}_A$$

is surjective, too. Now, it has been proved in [5, 2.3] that the canonical map

$$(D_k(A))^{**} \rightarrow ((D_k(B))^G)^{**} = (D_k(B))^G$$

is bijective. Hence we have a surjective map

$$(D_k(A))^{**} \rightarrow \mathfrak{m}_A$$

whose restriction on $D_k(A)$ acts on dF_i as $(\deg F_i) \cdot F_i$. In case $\deg F_i \neq 0$ in k, i = 1, ..., m, we obtain from Remark 2.2 that $\delta | D_k(A)$ is not a direct summand of $(D_k(A))^*$, even in case of a non-Gorenstein invariant ring $A = B^G$. This shows that any further investigation of problems raised in Remark 2.5 requires a study of twodimensional normal graded non-Gorenstein algebras which are not invariant rings.

References

- 11 H. Henner, Die Satze von Bertini für lokale Ringe, Math. Ann. 229 (1977) 97-111.
- [2] H. Grauert and R. Remmert, Analytische Stellenalgebren (Springer, Berlin, 1971).
- [3] M. Hochster, The Zariski-Lipman conjecture in the graded case, J. Algebra 47 (1977) 411-424.
- [4] L. Platte, Fin elementarer Beweis des Zariski-Lipman-Problems f
 ür graduierte analytische Algebren, Arch. Math. 31 (1978) 143-145.
- [4] I. Platte, Differentielle Eigenschaften der Invarianten regulärer Algebren, J. Algebra 62 (1980)
 1 12
- [6] 1 Platte, Pure descent for the module of Zariski-differentials, Proc. Amer. Math. Soc. 82 (1981) 7-12.
- [7] G. Scheja and U. Storch, Differentielle Eigenschaften de Lokalisierungen analytischer Algebren, Math. Ann. 197 (1972) 137-170.
- [8] G. Scheta and H. Wiebe, Uber Derivationen von lokalen analytischen Algebren, Symp. Math. XI (1973) 161-192.
- [9] G. Scheja and H. Wiebe, Uber Derivationen in isolierten Singularitäten auf vollständigen Durchschratten, Math. Ann. 225 (1977) 161–171.
- [10] G. Scheia and H. Wiebe, Zur Chevalley-Zerlegung von Derivationen, Manuscripta Math. 33 (1980) 159–176.
- [11] G. Scheia and H. Wiebe, Derivationen in zweidimensionalen normalen Singularitäten, Abl., Math. Scm. Hamburg.